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Singularities in the kinetics of coagulation processes 

F Leyvraz and H R Tschudi 
Institut fur theoretische Physik, Honggerberg, 8093 Zurich, Switzerland 

Received 11 November 1980, in final form 1 April 1981 

Abstract. We consider a system of substances A, reacting according to the following 
scheme: 

Ak + A l x A k + /  t R k /  = Rlk 3 0). 

(The reaction is taken as irreversible.) We discuss the existence of global solutions of the 
kinetic equations derived for the concentrations. It is shown that we cannot expect the total 
number of monomers to remain constant. Rather, it can decrease as the result of the 
formation of infinite clusters (gelation). With this restriction, we obtain that a physically 
reasonable global solution exists if Rkl S rkr, and rk = o(k) .  It is further conjectured that no 
gelation will take place if rk =o(&). The case R,k =(Aj+B) (Ak+B)  is also solved 
explicitly and shown to exhibit gelation at t = 1/A(A + B ) .  

1. Introduction 

The following model of reaction kinetics has been extensively studied, in the theory of 
polymerisation (in particular with respect to  gelation), as well as in the theory of 
colloidal suspensions. For reviews on these and related topics see e.g. Tompa (1976), 
Peebles (1971), Drake (1972). 

(1) We consider a system consisting of an infinite number of species A I ,  A2, . . . , 
where Ak is to  be thought of as consisting of k particles A I  bound together. We do not 
differentiate between any kinds of ‘isomers’. 

(2) The substances A I ,  A2 , .  . . react with each other according to the following 
scheme: 

Rkl is a reaction constant (depending only on k and I )  with 

Rkl = R l k  3 0. 

A few remarks concerning this model are in order. 
(i) Reaction (1.1) is entirely irreversible. This means that there is no  equilibrium 

possible in this model. Alternatively, one may think of the system as being far from 
chemical equilibrium in the beginning. The model then only holds as long as the system 
is still sufficiently far from equilibrium. 

(ii) We further disregard any reactions which might deactivate an Ak, say: 

Ak + Bl+ B k t l  or Ak +Bi+Bk +B1 
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where the B k  are otherwise inert molecules. This is a serious assumption. It can be 
hoped, however, that at least the structure of the singularities will remain unaltered. 

(iii) We finally remark that the Rkl are given coefficients which we shall in no way 
attempt to determine. Their determination is dependent on very particular models of 
the molecular processes involved, which we do not discuss. Instead we show what Can 
happen if the Rkl are chosen in a certain way. We shall discuss the case 

R k / =  ( A k  + B ) ( A l +  B )  

in particular detail, because it corresponds to the Flory-Stockmayer model of gelation 
and because, to our knowledge, the kinetic behaviour of the above system after gelation 
has not been discussed and even the very existence of a meaningful solution after 
gelation has been doubted (see e.g. McLeod 1962). 

If we denote the volume concentration of Ak by c k ,  we obtain 

k = l  k = l  

as kinetic equations describing the system. 

molecule of type Ak can be formed for k >N. We therefore obtain 
If we limit ourselves to a system containing at most N molecules of type A l ,  no 

N - j  

k = l  k = l  
R k , ] - k C k , d j - k , N  - cj,N c R j k C k , N .  (1.3) 

We consider (1.2) as a formal limit of (1.3) for large N, which appears to be physically 
reasonable. We shall later see how this can be made more rigorous. 

We further note that for an arbitrary sequence of numbers ( g j ) F l  the following 
relation holds: 

k + / S N  

This implies 
N 

jk,,,, = 0. (1.5) 
] = 1  

This reflects conservation of the total number of A l  molecules involved in a reaction of 
the type (1.1). It is not possible to show the analogue of (1.5) for the infinite system, as 
we shall see in an exactly solvable case. The reason for this is easy to understand: let us 
assume that 

lim q N ( t )  = ci(t) 
N-CC 

for all j and all t >  0. This is clearly necessary if (1.2) is to be interpreted as a limit of 
(1.3). We then have 
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This last term, however, need not vanish. If the dynamics (1 .3 )  can produce, in finite 
time, a finite quantity of clusters, the size of which goes to infinity as N does, then clearly 
it will not vanish. This phenomenon is well known in chemistry as gelation. 

As far as formula (1 .4 )  is concerned, it is seen that for N + CO the order of summation 
can be interchanged if the sums 

j = 1  j = l  j = l  

are finite for all I. It follows that gelation can only occur if 

f jRjlcj = CO 
j = 1  

for at least one 1. 
We now introduce some further assumptions on the nature of the system and on the 

constants Rkl. We assume that every Ak has a certain number of reactive sites, say rk. 
These are assumed to be equally reactive, independently of the size of the molecules 
they belong to. This leads in a straightforward way to the ansatz: 

Rkl = rkrl. (1 .6 )  

Furthermore, it is geometrically obvious that the number of reactive sites on Ak 
cannot grow more quickly than k, that is, there is a constant C such that 

rk C k .  

Indeed it is easily seen that linear growth of the r k  (that is, rk - Ck) is equivalent to the 
absence of cycles in the structure of Ak, i.e. we are essentially dealing with the 
Flory-Stockmayer model of gelation (see e.g. Stockmayer 1943, Flory 1941) .  The 
following model can be solved exactly: 

Rkl= ( A k  + B)(AI+ B ) ,  A >O,  B > - A .  

This solution is shown in the next section. It is most simply stated in the case B = 0, but 
similar results are obtained in the general case. We have 

as a solution of the equations 
~2 j - 1  m 

=- k (  j - k)CkC,-k - A2jci kCk, C j ( 0 )  = q,. 
2 k = l  k = l  

We notice immediately that 
m 

C j c j ( t )  = 1 ( t  s 1/A2) 
j = 1  

= 1 / A 2 t  ( t  2 l / A Z ) ,  

i.e. gelation (in the sense given above) does occur at t = 1/A2. It is readily seen that the 
solution given by (1.7) is continuously differentiable, and that the right-hand side of 
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equation (1 .8)  always makes sense and is always equal to the derivative of the function. 
This would not be the case if we had taken the small-times solution for all t :  the 
right-hand side would still always converge, but would be different from the left-hand 
side. (See e.g. McLeod 1962.) Actually the explicit construction of the solution in the 
general case (B # 0) proves that the solution to these equations is unique. 

Since the assumptions on Rkl in this model are quite severe, we wish to relax them 
somewhat and further assume that rk grows less quickly than k. This seems to be a 
reasonable way to account for the considerable amount of cross-linking, cyclisation and 
so on, which occurs in realistic large clusters. Indeed it can be reasonably argued that a 
reactive site must lie on the ‘surface’ of Ak, whereas k is proportional to its ‘volume’. 
This strongly indicates that 

rk 

k+m k lim -= 0. 

It is clear, however, that this is a very ad hoc way to deal with cyclisation. It has nothing 
of the detailed character of an analysis such as Stauffer’s on percolation and gelation 
(see Stauffer 1976, 1979) or Gordon and Scantlebury’s treatment (1966).  It might 
nonetheless be argued that our approach has more generality and does not rely on any 
particular geometrical assumptions, and therefore allows the discussion of other 
modifications of the classical Flory-Stockmayer model, since the whole argument relies 
only on the asymptotic behaviour of reaction constants. We now have the following: 

Theorem 1 .  Let Rkl  = Rlk 3 0  be such that 

rk  

k - m  k lim - = 0. Rkl rkrb  

Then there exists a solution ( c j ( t ) ) F l  of the infinite system 

C j ( 0 )  2 0 ,  
j = 1  

with the following properties. 
(i) c j ( t ) z O ,  X p l j c j ( t ) ~ l  for all t z O .  
(ii) c j ( t )  is continuously differentiable for all t 2 0. 
(iii) There is a sequence Ni + 00 such that 

lim ~ ~ , ~ , ( t )  = c j ( t )  
N,” 

for all j and all t 2 0. Furthermore, we have 

m 

The proof is given in § 3. 

Under the hypotheses given above, this theorem settles the general existence theory 
of kinetic equations of the type of equation (1.2)’ up to two important problems: 
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(1) The theorem says nothing about uniqueness of the solution of the infinite 

(2) The theorem does not assert that limN,m q N ( t )  exists. It is easily seen that once 
system. 

the existence of this limit is proved, we have 

lim q N ( t )  = c j ( t )  
N-m 

where c j ( t )  is a solution of (1.2) which in this case should clearly be considered as the 
physical solution. On the other hand, the proof of theorem 1 shows that if the solution 
of the infinite system is indeed unique, then limN+m ~ ~ , ~ ( t )  exists and is equal to this 
solution. 

Those two problems are then closely interconnected. We know of no satisfactory 
answer to either. There is a uniqueness result by Melzak (1957) valid for all times but 
with the restriction 

Rkl =Z c 
for all k,  1. Melzak also shows that under those circumstances no gelation can take 
place. There is another uniqueness result by McLeod (1962, p 193) under the 
hypothesis 

Rkl i Ckl 

which is, however, only valid for times so small that again gelation can be shown to be 
impossible. The difficulty appears to be that it is difficult to control the growth of a small 
initial error over times large enough to allow gelation (let alone arbitrary times!). 

Another interesting problem would be to know under which conditions gelation can 
occur at all. Here we have the following 

Conjecture. Let Rkl S rkrb where 

rk lim - = 0. 
k+m & 

Then gelation does not occur. 

The conjecture can be proved-as shown in an Appendix-if it is true that 
increasing one or several rk does not increase the gelation time. Although we strongly 
believe this to be true, we are not able to prove it. 

It is further not clear whether or not gelation will occur if 

rk but lim - = a. rk lim -= 0 
k-m k k-co  & 

There are a few heuristic arguments in favour of gelation, which will be discussed 
elsewhere. There is, however, the following: 

Theorem 2. Let Rkl 5 rkrl where rk 5 Ck for some C > 0. Then it cannot be true that 

f j c j ( t )  = 1 

The proof is so short that we give it here. 

for all t 3 0. 
j = 1  
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Proof. Assume the contrary. Then 

for all t. This implies that 

m 

j = 1  j = 1  2 

for t > O  sufficiently large. The transformation 

with 
m 

S j ( t )  = c R j k C k ( t )  
k = l  

leads to 
j - 1  

dj =i k = l  c R k , j - k  exp( [ d f ' ( s j - S k  - s j - k ) ) + k + j - k j  

+ j (o)  = C j ( 0 )  3 0,  

from which +j(t) 2 0 and therefore c j ( t )  2 0 follows for all t where the equations make 
sense. This is a contradiction and the theorem is proved. 

Finally, it must be noted that the theorem does not state that Czl jc j ( t )  < 1 at any 
finite time, since the existence of a global solution is not proven under the assumptions 
of the theorem. 

2. The Flory-Stockmayer model 

We want to solve the following system of equations: 

C j ( 0 )  = a i l ,  r k  = A k + B .  

Let us make the following substitutions: 

T = ( A  + ~ ) ~ t ,  pi = rjcj / (A + B ) .  

This leads to 
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In the following, the dot will always mean derivative with respect to T.  Since A > 0 and 
B > -A, we have 

b = B / ( A + B ) < l .  

We will also assume b # 0. The case b = 0 can then be obtained by an adequate limiting 
process. We further define 

m 

K ( T ) =  pk(7)7 
k = l  

[ ( l  - b)j  + b]  jT K ( T ’ )  dr’) 
0 

and obtain 

We now consider the generating function 

Obviously 

aG bG2 
( l - b ) ~ G - = -  

exp( b joT K ( T ’ )  d7’):- az 2 ’ 

G ( z ;  0)  = z .  

This is a quasilinear partial differential equation and can therefore be solved by 
Cauchy’s method of characteristics (for a discussion see e.g. Courant and Hilbert 
(1968)). It then follows that the solutions of the system 

dz/ds = -(1- b)zG, dG/ds = ibG2, 

T ( 0 )  = 0, G(0) = ~ ( 0 )  = 20,  

taken for all values of the parameter zo, cover the entire surface representing the 
function G ( z ;  7). 

We now proceed in two steps: first we determine the 4j(s), which is a purely local 
problem, since it only involves the form of G ( z ;  s) around z = 0. Next we determine 
K ( T )  and therefore are able to work in the variables (2; T), i.e. we can calculate 4 j ( ~ )  
and finally cj(r). 

Solving the equations (2.2) with the more general initial conditions 

= Go, z (0)  = 20,  

we obtain 

G(s )  = Go/’( 1 - ibGos), Z ( S )  = zO(l - ~ ~ G O S ) ~ ( ~ - ’ ) ’ ~ .  (2.3) 

With our more special initial conditions we obtain 

Go = 20 = t. 
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We have 

Therefore by Cauchy’s theorem 

where C is a small circle around the origin. It follows that 

We now need to determine K ( T ) .  Define 

We obtain 
00 

K ( T )  = 4 j ( ~ ) ~ ( ~ ) i ~ ( 7 ) b / ( 1 - b )  
j = 1  

= G(R(7);  T)R(T)~/(’-’). 

Differentiating R(T) with respect to T gives 

~ ( T )  = -(I- ~ ) K ( T ) R ( T )  = -(1- ~ ) R ( T ) G ( R ( T ) ;  T )  ds/d.r. 

Using equations (2.2), it follows that 

dR/ds=-( l -b)G(R(s) ;  s)R(s). (2.4) 

This is nothing else than the second of the equations (2.2). The equations (2.3) define a 
surface in the (s, z, G) space by the map 

(s, f ) - + ( s ,  z ( f ;  s), G ( f ;  s)) = (s, f ( l - $ b f ~ ) ~ ( ’ - ~ ) ’ ~ ,  - 

For an appropriate discussion of the function R(s)  we now investigate the nature of this 
surface, limiting ourselves to positive values of the parameters s, f .  We see that for a 
given s the function z ( f ,  s) cannot exceed the value 

2 

The corresponding value of f is 

f J S )  = 2/(2 - b)s  
and therefore 

G(LC(s); S )  = G,(s) = 1/(1- b ) ~ .  (2.7) 
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It can further be shown that, for fixed s, G(f; s) is a monotonic function, at least up to a 
point beyond the critical curve (s, zc(s) ,  G,(s)). This means that the surface 
(s, z(f ;  s), G([; s)) covers the region 

{(s, 2) : o s  z s z,(s)) 

twice. The two sheets meet smoothly along the critical curve. This means that the 
derivatives ( d G / d r ) ,  and (dG/dz), do not exist on this curve. This can easily be verified 
analytically. 

It follows from the above formulae that the second sheet does not represent a 
function analytic around zero. Since we have derived equation (2.4) for R(s)  under this 
assumption, we must be careful to solve (2.4) without ever reaching the second sheet. 
We have now 

R(0) = 1. 

Therefore, by equations (2.3), 

R(s )  = (1 -$bs)2(1-b)/b (S < 2/(2 - b) = s,( 1)) 

where s,(l)  is the inverse function of [,(s). For s > s,(l) we would be on the second 
sheet, which immediately leads to a contradiction with equation (2.4). However, we 
note that the curves (s, z (5 ;  s), G(5; s)) for fixed 5 are smooth in the neighbourhood of 
the critical curve. This means that the curves (s, z (5 ;  s)) will always be tangent to the 
curve (s, z,(s)) at their intersection. Therefore the two curves satisfy the same differen- 
tial equation, namely the second equation (2.2). The curve (s, z,(s)) is the projection on 
the (s, z )  plane of the critical curve (where both sheets of the surface meet). Though 
G ( z ;  s) is no longer analytic in z there, still equation (2.4) can be derived, since it is on 
the border of the domain of analyticity, by Abel's theorem. Therefore we can define 
R(s)  for all s as follows: 

R (s) = (1 - $bs)2(l--b)/b (S  S 2/(2 - b)) 

(2 - b ) ~  

The first equation (2.2) can now be written as 

dr/ds = R ( s ) - ~ / " - ~ '  

which can be solved to yield 

27 
s=- 2 + b r  (-&) 
= -  ( 2 ) ( 2 ( 1 - b ) ~ - b ) ' - ~  

Using (2.3) for s S 2/(2- b) and (2.7) otherwise, we obtain 

2-b  2-b 

1 
G(R(s) ;  S ) = T  

l-zbs 

1 
(1-b)s 

- -- 
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It follows that 

K ( T )  = G ( R ( s ) ;  s ) R ( s ) ~ ’ ( ’ - ~ )  

= 1 / ( 1 + i b ~ )  

2( 1 - b )  
2(1- b ) ~ -  b 

( T  s 1/(1- b)) 

- - 

Define now 

We have 

dC/d.r = - ~ ( K ( T ) ) ’ ,  

C(0) = 1, K ( T )  = (1 - b)M(T) + ~ C ( T ) .  

It follows that 

M ( 7 )  = 1 ( ~ s l / ( l - b ) )  

2 - b  
2 ( 1 - b ) r - b  

- - 

That is, we do indeed get gelation at T =  l / ( l - b ) ,  i.e. at t = l / A ( A + B ) .  The 
expressions for the concentrations c ~ ( T )  can now be derived, but they are complicated 
and quite unnecessary to the understanding of the phenomena involved, so we shall not 
go to any more detail. We have also systematically eliminated discussion of the 
‘singular’ case b = 0, since it can be derived by straightforward limiting processes. One 
obtains 

s = r  for all T,  
C$j(S) = 7 s j - 1 ,  F2 

(1 - 1). 

K ( 7 )  = M(T)  = 1 ( T S  1) 

= 1 / T  (7 Z= 11, 

and so on. Similar results can be obtained for more general initial conditions. The 
qualitative features remain the same, with the exception that if 

then gelation occurs immediately, that is 

2 jcj(t)< 1 for all t > 0. 
j =  1 
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Indeed it is not hard to show that the following formula holds for the gelation time t,: 

3. General existence theorem 

We want to prove: 

Theorem 1. Let Rkl = Rlk 5 0 be such that 

rk 

k + m  k lim -= 0. R k i  r k b ,  

Then there exists a solution (cj(T))F=l of the infinite system, 

C j ( 0 )  3 0,  2 jc j (o)= I, 
j =  1 

with the following properties: 

(i) c j ( t ) 5 0 ;  2,Fl jc j ( t )< 1 for all t s O .  
(ii) c j ( t )  is continuously differentiable for all t 5 0 .  
(iii) There is a sequence Ni += 00 such that 

lim ~ ~ , ~ , ( t )  = c,(t) 
N,+a3 

for all j and t 3 0. We even have 

N ,  m 

lim rjcj,N,(f) = r j c j ( t )  
N,+w j = 1  j = l  

where the ~ ~ , ~ ( t )  are solutions of the finite system. The theorem will become obvious 
after the proof of a few lemmas. 

Lemma 1. The system 

has a unique positive solution for all t 3 0. 

Proof. We have 

N 

j d j , , ,  = o 
j = 1  
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and therefore 
N N 

j c j , N ( t ) =  j c j ( 0 ) = K s  1 
j = 1  j =  1 

(3.3) 

for all t 3 0. Define 

We obtain 

From this it follows clearly that + j , N ( t )  > 0 for all t > 0 and all j .  This means that 

for all j and all t 3 0. cj,N ( t )  3 0 

Together with (3.3) this means that 

0 s ~ j , N ( t )  s K/ j .  

Since we are dealing with a finite system, standard theorems on ordinary differential 
equations prove the lemma. 

We now define two sequence spaces, which will play a major role in the following: 

with the corresponding norms 

In the following, a denotes the sequence ( u j ) z l .  

Lemma 2. Let ( a N ) : = l  be a bounded sequence of elements of 1 1 , 1 ,  i.e. 

l ] a N l l l , l  for all N. 

Then there exists a sequence Ni .+ 00 and an element a of 1 1 , 1  such that 

Proof. Let aN = ( u ~ , ~ ) ; ~ .  SincellaNI(l,l =s K, we have 

la j ,NI  s K / j  for all N and j .  

From this, it is standard (see e.g. Reed and Simon 1972, theorem 1.24) that there is a 
sequence Ni .+ 00 such that 

lim = ai 
Nt-m 
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for all j .  We now drop the subscript i. Let E > O  be arbitrary and M such that 

rk 

k = M  k max -s E .  

Choose now No so large that 

It follows that 

.s E (1 + 2 K )  

for all N >No, from which the convergence in the sense stated in the lemma follows. It 
follows that a E 11,1 by a reasoning already used in the Introduction: 

The lemma is thus proved. 

The example uN = ( ( l / N ) S j N ) p l  shows that although 

IlaNII1,I 1 for all N 

there is no subsequence convergent in l l , l .  

Lemma 3. The functions ( C j , N ( t ) ) : = l  are uniformlyequicontinuous, i.e. for every E > O  
there exists a S depending only on j such that for all t, t’ with 

It - t’j < 6 

lcj,N(t)-cj,N(f’)l < E  for all N. 
we have 

Proof. By the mean value theorem, it is enough to prove that 

lcj,N(t)l <Ai for all N and t 2 0. 

This follows by 

which proves the lemma. 
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Then there exists a sequence Ni + cy) and an element c of 11,1 such that 

lim IlcN,(t) - c(t)lll,r = 0 
N,+m 

for all t 3 0. 

Proof. Since the ~ ~ , ~ ( t )  are uniformly equicontinuous, it is possible by Ascoli's theorem 
(see e.g. Reed and Simon 1972, theorem 1.28) to choose a sequence Ni,l -+ 00 such that 

lim 
N,,,+m 

C 1  

uniformly in a given finite time interval, say [0, TI. Again, this can be refined to a 
sequence Ni,* + cy) such that both c ~ , ~ , , ~  converge. Again using a standard procedure, we 
take Ni = Ni,l and obtain 

lim ~ j , ~ ~ ( t )  = cj(t j  
N,+m 

for all j and t 2 O .  Now we have 

IlcN,(t)lll,l 6 1 for all t 2 0. 

We now claim that 

lim IlcN,W - c(t)Ill,r = 0 
N , + w  

for all t 3 0. Let us assume this to be wrong. Then for a given time to it .is possible to 
refine the sequence N, -+ cy) so that 

lim Ilc.w:(to) - d(J1,r = 0, d f d t o ) ,  
N,+X 

and therefore 

lim q N :  = dJ for all j ,  
N;+ w 

from which we obtain, since N :  is a refinement of N,, that 

dJ = Cl ( to)  

for all j .  This is a contradiction and the statement is proved. 

We now obtain: 

Result 2. Let c ( t )  be (as described above) a limit of a subsequence of ( ~ ~ ( t ) ) : = ~ .  The 
components satisfy 

Proof. If we drop the subscript i in the sequence Ni + 00, we obtain 

cj(t j  = lim ~ ~ , ~ ( t )  
N-m 
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(3.4) 

Furthermore 

as well as 

Therefore 

It is further clear that the whole integrand is uniformly bounded in N and t. Since we 
integrate only over a finite interval, we can interchange limit and integration, thereby 
proving the result. 

ResuZt 3. c j ( t )  is continuously differentiable for all t 2 0 and satisfies 

and jc j ( t )  < 1 and is non-increasing for all t 2 0. 

Proof. In order to prove (3.9,  it is sufficient, by result 2, to prove that the right-hand 
side of (3.5) is continuous in t. Since on any finite interval, c j ( t )  is the uniform limit of 
( ~ ~ , ~ ( t ) ) : = ~  and since the ~ ~ , ~ ( t )  are continuous, so are the c j ( t ) .  Furthermore 

This shows that the functions 

which are clearly continuous, converge uniformly to the infinite sum, which is therefore 
also continuous. This proves (3.5) and the continuity of its right-hand side. 

To show that C;, j c j ( t )  is non-increasing, note that 
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that is, it is non-increasing. Since, however, we have 
N m 

lim jc j ( t )  = jc j ( t )  c 1 
N-m j = 1  j =  1 

the whole result is proved. 

We have actually proved more than what is stated in the theorem: for example, 
given an arbitrary subsequence (cN,( t ) ) ; ,= 1 of solutions of the finite system, we can 
clearly refine it so that it converges to a solution of the infinite system. This implies the 
different connections, stated in the Introduction, between the uniqueness problem for 
the infinite system and the convergence problem for ( C N ( t ) ) ; s l .  

The theorem can also be extended in a straightforward way to the more general 
dynamics: 

/-I  m 

61 = t Rk,l-kP(Ck, C I - k ) -  R,kP(C,, C k ) ,  
k = l  k = l  

m c j C J ( 0 )  = 1, 
j = l  

c J ( o ) 3 0 ,  

where P(x, y )  is an arbitrary function of two positive variables, such that 
(i) P(x, y)  = P(y, x )  3 0  for all x ,  y smaller than one; 
(ii) P(x, y) c Cxy for some C > 0; 
(iii) P is continuous. 

A simple example is provided by 

P(x, Y 1 = ( X Y  1” ( P  > 1). 

Appendix 

We here wish to prove the following: 

Theorem. Let (rk);P=l be an arbitrary sequence of positive numbers such that 

r k  lim -= 0. 
k + m  & 

Then there exist sequences (B,,);=l such that 
(i) rk c A , ~  +B,  for all k and all n ;  
(ii) A,  (A,, + B,) = 0. 

Proof. Let E > O  be arbitrary. Choose N ( E )  such that 

r k C E J z  for all k a N ( E ) .  

Consider now the points (M,  EM^'^) and ( M  + 1, E ( M  + l)*’2). Since the square root is a 
concave function, it follows that the straight line joining these two points lies above all 
points ( k ,  skl i2) .  This means that 

Ekti2 c Q M k  + /3M 

where 
f f M  = & ( ( M +  1)1’2-kf1’2)j /3M = E((M+ l ) M 1 ’ * - M ( M +  1)1’2). 
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It is easy to see that 

pM = &M1/2 + O ( M - q ,  C ~ M ( ( U M  -k p ~ )  = : E 2  -k O(M-') .  

Keeping E fixed, it is then clearly possible to choose M ( E )  such that 

N(€) 
max rk  ~ M ( E )  ~ M ( E ) ~  + P M ( & ) .  

1 = 1  

But we have for all k >AT(&) 
rk c &k 'I2 c Y M ( E l k  + /3M(E) 

and from the two last inequalities it follows that 

rk  a M ( e ) k  + / ~ M ( E )  

for all k .  Now take 

A n  = a M ( l / n )  Bn = P M ( l / n ) .  

The first part of the theorem follows by construction. Furthermore, since the numbers 
M ( E )  can always be chosen so as to satisfy 

lim M ( E )  = CO 
E + O  

we obtain 

lim A , ( A n  + B,) = lim 
n - m  n-m 

Since An ( A n  + B,) is the inverse gelation time for rk = A,k + B,, the theorem shows 
rk can be dominated by coefficients leading to arbitrarily large gelation times. This 
proves the conjecture. 
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